
Logo is the computer 
language which children can 
use. It is not a computer 
game, but an ingenious 
educational aid that will 
stimulate and stretch the 
minds of children from as 
young as four years old. 

At the same time. working 
with Logo is fun . It combines 
the basic concepts of 
geometry. language and 
numbers with musical sound 
and colourful displays to 
provide an exciting learning 
environment which children 
find totally absorbing . The 
system encourages the child 
to experiment. which 
stimulates imaginative and 
logical thinking, and in the 
process it introduces young 
minds to the creative and 

practical process of writing 
computer programs. 

In addition to developing 
an awareness of geometrical 
shape and providing limitless 
scope for exciting designs. 
Logo introduces numerical 
concepts which help children 
to use numbers purposefully 
and with understanding. A 
third important educational 
feature of Logo is the facility 
to play with words, through 
which techniques for 
exploring language can be 
practised. 

Acornsoft Logo is the 
fullest possible version of this 
exciting computer language, 
available for both the BBC 
Microcomputer and the 
Acorn Electron. 

LOGO helps children learn to think logically 

Logo in the classroom. 
Acornsoft Logo provides an 
educational environment that 
children find irresistible. 
Working with Logo teaches 
therri a wide variety of skills 
basic to literacy and 
numeracy as well as 
providing limitless scope for 
imaginative design. Sound. 
colour, words and numbers 
combine to educate the child 
in a way that makes learning 
fun. while the system also 
gives children a valuable 
beginning in the world of 
computer technology. 

The floor turtle. which 
plots drawings or designs 
according to commands from 
the workstation. adds a 
further exciting dimension to 
the potential of Acornsoft 
Logo as an educational aid. 

Logo in the home. Logo is 
as relevant in the home as it 
is in the classroom. Used as a 
system for creative play it 
provides an educational 
microworld that fascinates 
the whole family . In addition, 
Logo in the home gives 
children the opportunity to 
further explore the 
possibilities discovered at 
school. 

1, 2 & 3. The turtle is the 
triangular cursor which 
moves around the screen to 
plot images. This is the 
friendly character at the heart 
of Logo's drawing facility . 
Images are built on the 
screen by writing simple 
programs which tell the turtle 
which way to move and as 
the turtle travels it leaves a 
trail behind it. As you can see 



here, turtle graphics can be 
used to draw just about 
anything. 

Once it is programmed to 
produce a particular 
geometrical shape, Logo can 
be told to repeat that shape 
over and over to produce 
developing patterns, such as 
spirals. A process called 
'recursion' allows a modified 
version of the same 
procedure to be put to work 
in producing more 
representational figures, like 
the trees shown in picture 1. 

The child can add the 
finishing touch to a picture 
by.giving it a title, because 
text can be incorporated 
an ¥where on the screen. 

6. Turtle graphics provide 
a clear and simple way to 
teach the fundamentals of 
geometry. Logo can continue 
developing shapes as simple 
or as complex as required. 
Here is a program written to 
illustrate the relationships 
between the number of sides 
in a regular polygon and the 
angles which occur in it . 

7 & 8. The Logo Editor can 
be used to change one, 
several or all procedures at 
once, using simple 
commands. The other screen 
here illustrates Logo 's 
powerful trace facility which 
is invaluable for locating any 
mistakes which may have 

4. Here it is possible to see 
that the size, shape and 
colour of the turtle can be 
altered and that animated 
shapes can be produced. 

5. As many as 32 turtles 
can be employed together at 
one time by writing a simple 
program to HATCH as many 
as required. Each turtle is 
given its instructions by the 
command TELL and they go 
to work to produce patterns 
of limitless possibility. The 
curves and loops shown "here 
are being generated by 
simple SIN and COS 
operations. 

-:_..-.,: 

"'"' ~ ~ ~ ~"1: 

~ --

occurred during 
programming. Sixteen 
different levels of tracinq 
allow procedure calls, 
statements and/or 
assignments to variables to 
be listed as they are carried 
out. 

Acornsoft Limited 
Betjeman House 
104 Hills Road 
Cambridge CB2 1LQ 
Telephone 
(0223) 316039 



ARITHMETIC 
ASN < number> Returns the angle (in degrees) 
whose sine value is < number>. 
A TN < number> Returns the angle (in degrees) 
whose tangent is <number>. 
COS < number> Returns the cosine of <number> 
degrees. 
DECS Returns the number of decimal places 
currently being worked to . 
EXP < number> Returns the exponential function 
of <number>. 
HEX < hexword> Returns the decimal value of 
<hexword>. 
HIBYTE < integer> Returns the high byte of the 
2-byte value <integer> ie QUOTIENT <integer> 
256. 
INT < number> Returns the integer part of 
<number>, any decimal part being stripped off. 
LOBYTE < integer> Returns the low byte of the 
2-byte value <integer> ie REMAINDER 
<integer> 256. 
LN < number> Returns the natural logarithm of 
<number>. 
PI Returns the value of pi. 
tPRODUCT < numberl > < number2> . 
Returns the product of the numbers input. 
QUOTIENT < numberl > < number2> Returns 
the integer part of <number1 >/<number2>. If 
<number2> is zero an error is generated. 
RANDOM < integer> Returns a random non
negative integer less than <integer>. 
REMAINDER < numberl > < number2> 
Returns the remainder of <number1>/ 
<nurnber2>. If <nurnber2> is zero an error is 
generated. 
RERANDOM < integer> Seeds the random 
number generator with <integer> to produce a 
repeatable sequence of random numbers. If no 
parameter is given then a random value is used to 
seed it. 
ROUND < number> Returns the value of 
<number> rounded to the nearest integer. 
SETDECS < integer> Controls the handling of 
numbers by setting the number of decimal places to 
<integer> if <integer> is in the range 0 to 8. 
SIN < number> Returns the sine of <number> 
degrees. 
SORT < number> Returns the square root of 
<number>. 
tSUM < numberl > < number2> ... Returns the 
sum of the numbers input. 
TAN < number> Returns the tangent of 
<number> degrees. 
+ Adds the numbers on either side and returns 
result. 
- Subtracts the number on the right from the 
number on the left and returns result. 
* Returns the product of the numbers on either 
side. 
I Divides number on left by number on right and 
returns result. 
> Returns TRUE if the number on the left is greater 
than the number on the right and FALSE otherwise. 
< Returns TRUE if the number on the left is less 
than the number on the right and FALSE otherwise. 
= Returns TRUE if the objects on the left and right 
are equal and FALSE otherwise. 

COMMENTS 
\ Causes the rest of the line to be treated as a 
comment. · -

DEBUG 
TC Shows the chain of current procedure calls 
along with their inputs. 
TRACE < integer> Tells the system to trace parts 
of the program: 

TRACE 1 traces every line 
TRACE 2 traces every procedure call 
TRACE 4 traces every primitive and buried 
procedure 
TRACE 8 pauses between trace messages 

These can be combined. 

DEFINING and ERASING 
BURY < name or list> Prevents the procedure(s) 
specified being listed, edited or saved. 
BURY ALL Prevents all procedures being listed, 
edited or saved. 
COPYDEF < newname> < fromname> Copies 
the definition of the procedure <fromname> and 
calls it <newname>. 
DEFINE < name> < list> Allows you to write 
procedures that define other procedures, <name> 
is the procedure to be defined; <list> helps with 
the definition and consists of a series of sublists . 

Copyright e> Acornsoft Limited 1984 

ED ALL Edits all procedures and names in 
workspace. 
EDIT (ED) < procname or list> Puts the 
procedure(s) specified into the edit buffer so 
allowing you to edit them. If the input is absent the 
current contents of the edit buffer will be displayed. 
EON < varname or list> Edits the variable(s) 
specified. 
EONS Edits all the variables in the workspace. 
EDPS Edits all the procedures in the workspace. 
END Defines the end of a procedure. 
ERALLErases all procedures and variables from 
the workspace. 
ERASE (ER) < procname or list> Erases the most 
recent invocation of the procedure(s) specified from 
the workspace. 
ERN < vamame or list> Erases the most recent 
invocation of the variable(s) specified from the 
workspace. 
ERNS Erases all invocations of all variables from the 
workspace. 
ERPS Erases all procedures from the workspace. 
NOREDEF Prevents primitives being redefined. 
REDEF Allows primitives to be redefined. 
REDEFQ Returns TRUE if primitives can currently 
be redefined and FALSE otherwise. 
TEXT < procname> Returns the definition of 
<procname> as a list of lists. 
TO < procname> < parameters> Tells Logo that 
you are defining a procedure <procname> which 
has the inputs <parameters>. 
UNBURY < procname or list> Allows the· 
procedure(s) specified to be listed, edited or saved. 
UNBURY ALL Allows all procedures in workspace 
to be listed, edited or saved. 

EDITING COMMANDS 
arrow keys Allow the cursor to be moved around 
the screen. 
CTRL/FUNC left Moves the cursor to the start of 
the current Logo line. 
CTRL/FUNC right Moves the cursor to the end of 
the current Logo line. 
CTRL/FUNC up Moves the cursor to the top of 
text. 
CTRL/FUNC down Moves the cursor to the 
bottom of the text. 
DELETE Deletes the character before the cursor. 
CTRL/FUNC D Deletes the character at the cursor 
position. 
CTRLIFUNC U Deletes the current Logo line. 
CTRL/FUNC L Deletes from the current cursor 
position to the end of the current Logo line . 
CTRLIFUNC N Inserts a new line below the 
current cursor position. 
COPY Exits from the editor, preserving any 
changes made. 
ESCAPE Exits from the editor without altering the 
original procedure(s)/name(s). 

FILES 
CAT Catalogues the current filing system. 
ERFILE <filename> Deletes <filename> from 
the current filing system. 
LOAD <filename> Loads the contents of the file 
<filename> into your workspace. 
READPICT <filename> Copies the picture in the 
file <filename> on to the screen, changing the 
screen mode, number of lines of text, palette and 
type of screen if necessary. 
SAVE < filename> <procname or list> Creates 
the file <filename> and saves into it all variables 
and property lists held in your workspace. If the 
second input is present then the procedures 
specified will be saved, otherwise all procedures 
will be saved. If you call a procedure LOAD !NIT and 
save it, then when it is loaded again it will be 
executed automatically. 
SAVEPICT < filename> Creates the file 
<filename> and saves into it the graphics part of 
the screen. 

FLOOR TURTLES 
BACK (BK) < number> Moves the turtle back by 
<number> steps. 
EXPLORE < number> Moves the turtle forward 
by <number> steps or until it hits something and 
returns the number of steps which it managed to 
cover. 
FLOOR Tells Logo that all subsequent commands 
apply to the floor turtle rather than the screen turtle. 
FORWARD (FD) < number> Moves the turtle 
forwards by <number> steps. 
HOOT Generates a brief sound from the turtle's 
speaker, if one exists, otherwise causes a BEEP 
from the computer. 

LEFT (LT) < number> Turns the turtle left by 
<number> degrees. 
PENDOWN (PO) Lowers the pen so that the turtle 
leaves a trail behind it when it moves . 
PENUP (PU) Lifts up the pen so that the turtle does 
not leave a trail behind it when it moves . 
PENUPQReturns TRUE if the turtle's pen is up and 
FALSE otherwise. 
RIGHT (RT) < number> Turns the turtle right by 
<number> degrees. 
SCREEN Tells Logo that all subsequent commands 
apply to the screen rather than the floor turtle. 
SCREENQReturns TRUE if the screen turtle is in 
use and FALSE otherwise. 
SENSE < number> Returns the value TRUE if the 
turtle sensor <number> is touching anything and 
FALSE otherwise. 

KEYBOARD 
CI Clears the keyboard input buffer. Any keys 
pressed before CI is issued will be forgotten. 
INKEY < integer> If <integer> is in the range 0 to 
3276 INKEY waits for that number of tenths of 
seconds or until a key is pressed. If no key was 
pressed, the empty word is returned; if a key was 
pressed the one-character word CHAR <code> is 
returned, where <code> is the ASCII value of the 
key. If <integer> is negative a specific key is tested 
and the value TRUE returned if that key is currently 
pressed, and FALSE otherwise. 
KEYQ Returns the value TRUE if a key has been 
pressed and its value has not been used by RC, 
READ WORD or READ LINE, and FALSE otherwise. 
RC Reads the next character from the keyboard; 
waits for one to be typed if none is available. 
READ LIST (RL) Reads the following line from the 
keyboard in the form of a list. 
READ WORD (RW) Reads the first word of the line 
entered from the keyboard. 

LOGICAL 
tALL OF <tit> <tit> ... Returns TRUE if all 
expressions are true and FALSE otherwise. 
t ANY OF <tit> <tit> . .. Returns TRUE if at least 
one of the expressions is true and FALSE otherwise. 
NOT < tlf> Returns TRUE if the expression is false 
and FALSE if the expression is true. 

MANY TURTLES 
ALIVEQ < integer> Returns TRUE if turtle 
<integer> is 'alive' and FALSE otherwise. 
FORGET < integer or list> Deletes the turtle or 
turtles specified from the list of turtles currently 
'alive'. TURTLE 0 cannot be deleted. 
tHATCH < integer or list> < integer2 or list2> 
Creates the turtle or turtles with the numbers given 
by the first input at the current turtle position, with 
the shape of the current turtle or with a shape given 
by SETSH of the second input if one is given. Each 
input must be different from all identifiers of 
currently 'alive' turtles and must be in the range 
1 to 32. 
TELL < integer or list> Determines which turtles 
all the subsequent primitives will apply to. The 
effect of TELL is cancelled by another TELL. 
TURTLES Returns a list of all turtles currently alive. 
WHO Returns a list of all turtles currently being 
talked to. 

MISCELLANEOUS 
CALL < address> Calls the machine code routine 
at <address>. On entry to the machine code, the 
A, X andY registers are setup from bytes 0, 1 and 2 
respectively of DA T AAREA. On return bytes 0 to 3 
are set up from the A, X, Y and P flags/registers 
respectively. 
DASIZE Returns the size of the data area in bytes. 
:fDAT AAREA < integer> Returns the byte 
address of a data area reserved by Logo of size 
<integer> bytes. 
DEPOSIT < address> < byteinteger> Places the 
value <byteinteger> in the location with address 
<address>. 
EXAMINE < address> Returns the contents of 
the location <address>. 
HIBYTE < integer> Returns the high byte of the 
2-byte integer value <integer> ie QUOTIENT 
<integer> 256. 
LOBYTE < integer> Returns the low byte of the 
2-byte integer value <integer> ie REMAINDER 
<integer> 256. 
OSBYTE < integer> < integer> < integer> 
Calls the operating system general purpose routine 
with the A register and optionally the X andY 
registers. The contents of the X andY registers are 
returned as the low and high byte of the result. 

OTHER INPUT AND 
ADV AL < integer> If 
4 it returns the value of 
converter channel. 
BEEP Generates a briE 
loudspeaker. 
BUTTONQ <integer 
the button on the appr< 
pressed and FALSE otl 
or 2 then an error is gen 
ENVELOPE 14* <int 
and pitch of sounds crE 
operation. 
PRSCREEN Copies th 
the printer unless the s· 
which case it does not! 
SOUND < channel>· 
< duration> Producef 
loudspeaker. 
TIME Returns the timE 
the computer was swit 
operation was last use< 
zero at 26214 (approx 4 
TIMERESET Resets tl 
WAIT < tenths of sec 
running for the number 
or until ESCAPE is pres 
WS Returns a list of tw< 
total number of bytes fi 
the maximum workspa 
individual item. 

PROGRAM CONTRC 
BREAK Breaks out ofF 
loops. 
CATCH < catch label 
THROW <catch label~ 
execution, control retu 
<catch label>. 
CATCH "TRUE < list: 
CATCH "ERROR < lis 
suppresses error mess< 
CATCH "ESCAPE <~ 
ESCAPE key. 
CONTINUE (CO) Res1 
has been executed orE 
DO FOREVER < list> 
until a BREAK, LOOP,< 
encountered, an error c 
executed and moves cc 
ERRMSG < list> Print 
message when <list> 
form given by ERROR. 
ERROR Returns inforrr 
occurred whilst a CATt 
information is in the for 
the error number and tl 
error or empty lists if nc 
GO < label> Transfen 
following <label> in tl 
IF < tlf> < listl > < lis 
TRUE then <listl> isE 
is executed if it exists. 
IFF ALSE < list> If the 
TEST in the current pro 
is executed otherwise i 
IFTRUE < list> If the r 
TEST in the current pro 
executed otherwise it c 
LABEL < label> Used 
primitive - GO <label:: 
instruction following < 
LOOP Returns control · 
REPEAT or DOFOREVl 
REPEAT, increments tl 
OUTPUT (OP) < obje< 
when control is passed 
which called it. 
PAUSE Suspends theE 
until CONTINUE is typ< 
instructions to debug y 
REPEAT < integer> · 
<integer> times unles 
DO FOREVER. 
RUN < list> Runs <lis 
in directly. 
SETERR < list> Reger 
been trapped by CATC 
to take action about it y 
STOP Is only allowed;~ 
the procedure and retw 
which it was called. 
TEST < t/f> Tests wh1 
TRUE or FALSE and rer 
subsequent IFF ALSEa 
THROW < catchlabe: 
primitive to dictate con 



AT YOUR COMMAND 
ITPUT 
nteger> is between 1 and 
.t analogue to digital 

1und from the machine's 

~eturns the value TRUE if 
ate joystick is being 
'lise. If <integer> is not 1 
ted. 
3r> Controls the volume 
d with the SOUND 

mtents of the screen to 
3n is in modes 3, 6 or7in 
r 
nplitude> < pitch> 
ound from the internal 

tenths of a second since 
'CIon or the TIMERESET 
he time 'wraps round' to 
inutes 41 .44 seconds). 
me counter to zero. 
Stops the program 
.enths of a second input 
I. 
tegers. the first being the 
n workspace , the second 
lVailable for one 

EAT or DO FOREVER 

~list> Runs < list> and if 
called during its 
to the primitive after 

3.tchesanyTHROW. 
Catches errors and 

• Catches any use of the 

JS running after a PAUSE 
\PE has been pressed. 
>eats < list> forever or 
'PUT or STOP is 
1rs or a THROW or GO is 
ol out of the list. 
e appropriate error 
tains information in the 

Jn about an error that has 
'ERROR is in effect. The 
fa list with two items, 
vo parameters of the 
xistent. 
1trol to the instruction 
1meproce'Ciure. 
· If the expression is 
uted otherwise < list2> 

ult of the most recent 
ure was FALSE . <list> 
esnothing. 
lt of the most recent 
ure was TRUE , <list> is 
nothing. 

:onjunction with the GO 
sses control to the 
Jl> . 
1e beginning of the 
1st and, in the case of 
Jpeatcount. 
Returns <object> 
k to the procedure 

ution of a procedure 
1. allowing you to enter 
proce'Ciure. 
t> Rur1s <list> 
rtructe'CI otherwise as in 

IS if it were being typed 

tes an error which has 
:RROR if you decide not 
;elf. 
n a procedure. It stops 
:ontrol to the point at 

r the expression is 
lbers the result for 
?TRUE instructions. 
; used with theCA TCH 
juring execution. 

THROW "LEVEL Returns control to the most 
recent command level. 
THROW "TOPLEVELReturns to the highest 
command level. 
TIDY Forces a garbage collection to be carried out. 

PROPERTY LISTS 
ERPLIST < name or list> Erases the property 
name(s) specifie'CI , along with their properties. 
ERPLISTS Erases all property names and their 
properties. 
GPROP < name> < propname> Returns the 
value associated with a specific property 
<propname> of the word <name>. If there is no 
such <name> or no such property of < name> it 
will return the empty list. 
PLIST < name> Returns the property list of the 
word <name>, if there is no such property list it 
will return the empty list. 
PP ALL Prints the property list of every name. 
PPROP <name> < propname> < word or list> 
Gives the word <name> a specific property 
<propname> with the value <word or list> . 
PPS < name or list> Prints the property list(s) 
associated with the name(s) specified. 
REMPROP < name> < prop name> Removes 
the property <propname> from the property list of 
the word <name>. 

SCREEN 
CT Clears the text area of the screen and puts the 
cursor at its top left hand comer. 
CURSOR Returns the text cursor position as a list 
of its x andy coordinates. 
MODE Returns the current screen mode. 
PAL < integerl > < integer2> Sets the logical 
colour <integer1 > to the physical colour 
<integer2>. 
PM < integer> Ensures that sufficient space is 
reserved in memory for you to be able to change to 
screen mode <integer>. 
tPRINT (PR) < word or list> ... Outputs the 
word(s) specified at the text cursor position, 
separate'CI by spaces and followed by a carriage 
return. 
SCR Returns the value of the screen· s aspect ratio. 
SET CURSOR < list> Places the text cursor at the 
position represented by <list>, which consists of 
the column number followed by the line number. 
SETMODE < integer> Changes the current 
screen mode to MODE <integer> . 
SETSCR < integer> Sets screen aspect ratio to 
<integer>. 
SHOW < object> Prints the contents of <object> 
on the screen, followe'CI by a carriage return. 
TS Reserves the entire screen for text and clears it. 
tTYPE < word or list> ... Outputs the word(s) 
specifie'CI at the text cursor position. It does not 
insert spaces between them nor a carriage return at 
the end. 
tVDU < number> or"; or < list> ... Allows you 
to send control codes to the VDU driver. 

SCREEN PRINT 
PO <procname or list> Prints the definition of the 
procedure(s) specified. 
PO ALL Prints the definition of every procedure and 
the contents of every variable that is currently in 
your workspace. 
PONS Prints the name and value of every variable 
that is currently held in your workspace. 
POPS Prints out the definition of every procedure in 
your workspace 
POTS Prints out the title line of every procedure in 
your workspace. 

SPECIAL WORDS 
"ERROR "ESCAPE 
"FALSE "TRUE 
"LEVEL "TOPLEVEL 

TURTLE GRAPHICS 
BACK (BK) < numbe-"> Moves the turtle 
backwards by <num',er> steps. 
BG Returns an integer which represents the logical 
background colour. 
CLEAN Clears the graphics area, leaving the turtle 
where it is. . 
CS Clears the graphics area and returns the turtle to 
the centre of the screen. 
DISTANCE < list> Returns the distance from the 
current turtle position to the point on the screen 
addressed by <list> which is in the form [x,y]. 
DOT <list> Returns an integer which represents 
the colour of the dot at the position specifie'CI by 
<list> which is in the form [x, y] . 

DRAW < integer> Resets the screen and reserves 
<integer> lines at the bottom of the screen for text 
(the default being 6) . 
FENCE Sets a fence around the graphics area and 
displays an error message if the turtle hits it. 
FORWARD (FD) < number> Moves the turtle 
forward by <number> steps. 
:t:HEADING < integer> Returns the direction in 
which the turtle <integer> is pointing in degrees. 
HIDETURTLE (HT) Hides the turtle from view 
until SHOWTURTLE is used . 
HOME Returns the turtle to the centre of the 
screen.leaving a track if the pen is down. 
LEFT (L T) < number> Turns the turtle left by 
<number> degrees. 
:t:PC < integer> Returns an integer which 
represents the current pen colour of turtle 
<integer>. 
PE Tells the turtle to erase all lines over which it 
passes as it moves . The eraser can be removed by 
using PENDOWN, PENUP, PENRESET or PX. 
:t:PEN < integer> Returns the current pen 
parameters of turtle <integer> in the form of a list: 
penstate- either PU, PD, PE or PX 
shown- TRUE if turtle is visible, FALSE otherwise 
colour- pen colour 
nib- current graphics option 
pen type- colour option 
PEND OWN (PD) Tells the turtle to draw lines 
when it moves. 
PENRESET Resets the turtle state, so that the 
turtle is shown, the penis down, colour is 7, nib is 8 
and pen type is 0. 
PENUP (PU) Lifts the turtle's pen up so that no 
lines are drawn when it moves. 
PENUPO Returns TRUE if the turtle's pen is up and 
FALSE otherwise. 
:t:POS < integer> Returns the position of turtle 
<integer> in the form of a list. 
PXSets a reversing pen. 
RIGHT (RT) < number> Turns the turtle right by 
<number> degrees. 
SECT < numberl > < number2> < number3> 
Draws a sector through angle <number2> with 
radius <number1 > and thickness <number3>. 
SETBG < integer> Sets the background to the 
colour represente'CI by <integer> . 
SETDOT <list> Puts a dot at the position 
represented by <list> which is in the form (x,y). in 
the current pen colour and without moving the 
turtle. 
SETHEADING (SETH) < number> Turns the 
turtle so that it is pointing in the direction 
<number> degrees. 
SETNIB < integer> Sets the BASIC PLOT code 
value to <integer> to give dotted lines . triangles 
etc. 
SETPC < integer> Changes the logical pen colour 
to the colour represented by < integer>. 
SETPEN < list> Sets the pen state to the condition 
determined by <list> which has five parameters: 
penstate, shown, colour, nibandpentype. 
SETPOS < list> Moves the turtle to the position 
specified by < list> which is in the form [x. y]. 
SETPT < integer> Defines the way in which 
colours are to be used, eg Exclusive-ORed or 
ANDed on to the screen. 
SETSH < integer or list> Allows the turtle to be 
redefined by sending one or a list of VDU 
commands describing what you want it to be. 
SETX < number> Moves the turtle horizontally to 
the point with the x-coordinate <number>. 
SETY < number> Moves the turtle vertically to 
the point with they-coordinate <number> . 
:t:SH < integer> Returns the list of VDU 
parameters which define the current shape of turtle 
<integer>. . 
SHOWTURTLE (ST) Makes the turtle visible 
STAMP Causes an image of the turtle to be left on 
the screen at its current position. 
tTITLE < word or list> ... Prints the object(s) 
you give it at the current turtle position. 
TOWARDS < list> Returns a value which 
indicates the heading needed to make the turtle 
face the position given by <list> which is in the 
form[x ,y] . 
WINDOW Turns the screen into a window which 
shows only part of the field in which the turtle can 
move. If the turtle moves out of this window it will 
still move as instructed but will not be visible . 
WRAP Places a fence arour1d the screen so that 
when the turtle hits the fence it reappears on the 
opposite side of the screen. 
:t:XPOS < integer> Returns the x-coordinate of 
the current position of turtle <integer>. 
:t:YPOS < integer> Returns they-coordinate of the 
current position of turtle <integer>. 

t The inputs to these primitives may be repeated one or more times. 

TESTS ON OBJECTS 
BURIEDQ < procname> Returns the value TRUE 
if the procedure <procname> is buried and FALSE 
otherwise. 
DEFINEDO < name> Returns TRUE if <name> 
is the name of a procedure or primitive and FALSE 
otherwise. · 
EMPTYO < object> Returns TRUE if <object> is 
the empty word of empty list and FALSE otherwise. 
LISTQ < object> Returns TRUE if <object> is a 
list and FALSE otherwise. 
MEMBERO < object1 > < object2> Returns the 
value TRUE if <object1 > is an element of 
<object2> and FALSE otherwise. 
NUMBERQ < object> Returns TRUE if <object> 
is a nurrlber and FALSE otherwise. 
PRIMITIVEO < name> Returns TRUE if 
<name> is a primitive and FALSE otherwise. 
THIN GO < name> Returns TRUE if <name> has 
some value and FALSE otherwise. 
WORDO < object> Returns the value TRUE if 
<object> is a word and FALSE otherwise. 

VARIABLES 
LOCAL < name> < value> Hides any previous 
invocation of <name> from the current procedure 
or list and replaces it with a new one containing 
<value>. The previous value is restored on leaving 
the procedure or list. when THROW transfers 
control to a procedure at a higher level, when ERN 
is used to erase it or when an error is encountered. 
MAKE < name> < value> Assigns the value 
<value> to <name>. 
THING < name> Returns the contents of the 
variable <name> . 

WORDS AND LISTS 
ADDITEM < integer> < objectl > < object2> 
Returns an object made up of <object1 >with 
<object2> added at position <integer>. 
ASCII < word> Returns the ASCII value of the first 
character of <word>. 
BUTFIRST (BF) < object> Outputs everything 
except the first element of <object>. Using it on 
empty words and lists will generate an error. 
BUTLAST (BL) < object> Outputs everything 
except the last element of <object>. Using it on 
empty words and lists will generate an error. 
CAPS < object> Converts the letters of <object> 
to capitals. 
CHAR < integer> Returns a one character word 
whose ASCII code is <integer>. 
COUNT <object> Returns the number of 
elements in <object>. 
ERITEM < integer> < object> Returns an object 
which is <object> with the element at position 
<integer> removed. 
FIRST < object> Returns the first element of 
<object>. Using an empty word or list will 
generate an error. 
FPUT < objectl > < object2> Produces a new list 
by putting <object1> at the beginning of 
<object2>. 
ITEM < integer> < object> Returns the element 
in position <integer> of <object>. If the 
<integer>th element doesn't exist then an error is 
generated. 
LAST <object> Returns the last element of 
<object>. Using an empty word or list will 
generate an error. 
tLIST < object> < object> ... Returns a list 
whose elements are the objects specified. 
LPUT < objectl > < object2> Produces a new list 
by putting <object1 > at the end of <object2>. 
MEMBER < objectl > < object2> If <object1> 
is an element of <object2> it returns the element 
number, otherwise it returns zero. 
tSENTENCE (SE) < object> < object> . 
Combines the objects specified to form one list. 
SETITEM < integer> < objectl > < object2> 
Returns an object which is <object1> with 
element <integer> changed to <object2>. 
tWORD <word> < word> . .. Returns a word 
that is built up from the words specified. 

* If the input shown is used then the primitive and the input must be enclosed in brackets. The input defaults to 0. 


